Horváth, Gábor (2007) On additive representation function of general sequences. Acta Mathematica Hungarica, 115 (1-2). pp. 169-175. ISSN 0236-5294
|
Text
Horváth2007_Article_OnAdditiveRepresentationFuncti.pdf - Published Version Restricted to Repository staff only until 7 June 2345. Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (250kB) |
Official URL: http://doi.org/10.1007/s10474-007-5230-7
Abstract
Let 0 ≦ a 1 < a 2 < ⋯ be an infinite sequence of integers and let r 1(A, n) = |(i;j): a i + a j = n, i ≦ j|. We show that if d > 0 is an integer, then there does not exist n 0 such that d ≦ r 1 (A, n) ≦ d + [√2d + ½] for n > n 0.
| Item Type: | Article |
|---|---|
| Divisions: | Informatika Intézet > Matematikai és Számítástudományi Tanszék |
| Depositing User: | Gergely Beregi |
| Date Deposited: | 23 Jun 2021 09:05 |
| Last Modified: | 23 Jun 2021 09:05 |
| URI: | http://publication.repo.uniduna.hu/id/eprint/781 |
| MTMT: | 1491222 |
Actions (login required)
![]() |
View Item |


