On additive representation function of general sequences

Horváth, Gábor (2007) On additive representation function of general sequences. Acta Mathematica Hungarica, 115 (1-2). pp. 169-175. ISSN 0236-5294

[img] Text
Horváth2007_Article_OnAdditiveRepresentationFuncti.pdf - Published Version
Restricted to Repository staff only until 7 June 2345.
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (250kB)
Official URL: http://doi.org/10.1007/s10474-007-5230-7

Abstract

Let 0 ≦ a 1 < a 2 < ⋯ be an infinite sequence of integers and let r 1(A, n) = |(i;j): a i + a j = n, i ≦ j|. We show that if d > 0 is an integer, then there does not exist n 0 such that d ≦ r 1 (A, n) ≦ d + [√2d + ½] for n > n 0.

Item Type: Article
Divisions: Informatika Intézet > Matematikai és Számítástudományi Tanszék
Depositing User: Gergely Beregi
Date Deposited: 23 Jun 2021 09:05
Last Modified: 23 Jun 2021 09:05
URI: http://publication.repo.uniduna.hu/id/eprint/781
MTMT: 1491222

Actions (login required)

View Item View Item