Horváth, Gábor (2007) An improvement of a theorem of Erdős and Sárközy. Pollack Periodica, 2 (Supple). pp. 155-161. ISSN 1788-1994
![]() |
Text
[17883911 - Pollack Periodica] An improvement of a theorem of Erdős and Sárközy.pdf - Published Version Restricted to Repository staff only Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (170kB) |
Official URL: http://doi.org/10.1556/pollack.2.2007.s.14
Abstract
Let 12 ... a a< <be an infinite sequence of positive integers and denote by ()2R nthe number of solutions of i jn a a= +. P. Erdıs and A. Sárközy proved that if ()g n is a monotonically increasing arithmetic function with ()g n→ +∞ and ( )( )()2logg n o n n−= then ( ) ( )( )()2R n g n o g n−= cannot hold. We will show that for any 0ε>, the inequality ( ) ( )( ) ( )21R n g ng nε−≤ − cannot hold from a certain point on.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Additive number theory, General sequences, Additive representation function |
Divisions: | Informatika Intézet > Matematikai és Számítástudományi Tanszék |
Depositing User: | Gergely Beregi |
Date Deposited: | 23 Jun 2021 09:06 |
Last Modified: | 23 Jun 2021 09:06 |
URI: | http://publication.repo.uniduna.hu/id/eprint/782 |
MTMT: | 1491227 |
Actions (login required)
![]() |
View Item |