Horváth, Gábor (2011) A lower bound for the number of blocks of t − (v, k, λ) designs with t odd. Discrete Mathematics, 311 (12). pp. 1034-1039. ISSN 0012-365X
![]() |
Text
1-s2.0-S0012365X11000951-main.pdf - Published Version Restricted to Repository staff only Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (201kB) |
Official URL: http://doi.org/10.1016/j.disc.2011.03.005
Abstract
The aim of this paper is to give a new combinatorial proof of Fisher’s inequality and to prove that if t is odd, t > 1, ε > 0 and b is the number of blocks of a t − (v, k, λ) design, then b = (1 − ε)(λ 2t − (λ − 1)2t )t2 (t − 1)−t2 vt2 for v = v0.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Combinatorics; Design; Fisher’s inequality |
Divisions: | Informatika Intézet > Matematikai és Számítástudományi Tanszék |
Depositing User: | Gergely Beregi |
Date Deposited: | 23 Jun 2021 09:04 |
Last Modified: | 23 Jun 2021 09:04 |
URI: | http://publication.repo.uniduna.hu/id/eprint/784 |
MTMT: | 1491242 |
Actions (login required)
![]() |
View Item |