A lower bound for the number of blocks of t − (v, k, λ) designs with t odd

Horváth, Gábor (2011) A lower bound for the number of blocks of t − (v, k, λ) designs with t odd. Discrete Mathematics, 311 (12). pp. 1034-1039. ISSN 0012-365X

[img] Text
1-s2.0-S0012365X11000951-main.pdf - Published Version
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (201kB)
Official URL: http://doi.org/10.1016/j.disc.2011.03.005

Abstract

The aim of this paper is to give a new combinatorial proof of Fisher’s inequality and to prove that if t is odd, t > 1, ε > 0 and b is the number of blocks of a t − (v, k, λ) design, then b = (1 − ε)(λ 2t − (λ − 1)2t )t2 (t − 1)−t2 vt2 for v = v0.

Item Type: Article
Uncontrolled Keywords: Combinatorics; Design; Fisher’s inequality
Divisions: Informatika Intézet > Matematikai és Számítástudományi Tanszék
Depositing User: Gergely Beregi
Date Deposited: 23 Jun 2021 09:04
Last Modified: 23 Jun 2021 09:04
URI: http://publication.repo.uniduna.hu/id/eprint/784
MTMT: 1491242

Actions (login required)

View Item View Item